Gene algebra from a genetic code algebraic structure.

نویسندگان

  • R Sanchez
  • E Morgado
  • R Grau
چکیده

By considering two important factors involved in the codon-anticodon interactions, the hydrogen bond number and the chemical type of bases, a codon array of the genetic code table as an increasing code scale of interaction energies of amino acids in proteins was obtained. Next, in order to consecutively obtain all codons from the codon AAC, a sum operation has been introduced in the set of codons. The group obtained over the set of codons is isomorphic to the group (Z(64), +) of the integer module 64. On the Z(64)-algebra of the set of 64(N) codon sequences of length N, gene mutations are described by means of endomorphisms f:(Z(64))(N)-->(Z(64))(N). Endomorphisms and automorphisms helped us describe the gene mutation pathways. For instance, 77.7% mutations in 749 HIV protease gene sequences correspond to unique diagonal endomorphisms of the wild type strain HXB2. In particular, most of the reported mutations that confer drug resistance to the HIV protease gene correspond to diagonal automorphisms of the wild type. What is more, in the human beta-globin gene a similar situation appears where most of the single codon mutations correspond to automorphisms. Hence, in the analyses of molecular evolution process on the DNA sequence set of length N, the Z(64)-algebra will help us explain the quantitative relationships between genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Matching of Vulnerabilities in a Low-Level Code

This paper explores the algebraic matching approach for detection of vulnerabilities in binary codes. The algebraic programming system is used for implementing this method. It is anticipated that models of vulnerabilities and programs to be verified are presented as behavior algebra and action language specifications. The methods of algebraic matching are based on rewriting rules and techniques...

متن کامل

A novel Lie algebra of the genetic code over the Galois field of four DNA bases.

Starting from the four DNA bases order in the Boolean lattice, a novel Lie Algebra of the genetic code is proposed. Here, the main partitions of the genetic code table were obtained as equivalent classes of quotient spaces of the genetic code vector space over the Galois field of the four DNA bases. The new algebraic structure shows strong connections among algebraic relationships, codon assign...

متن کامل

Matrix genetics, part 3: the evolution of the genetic code from the viewpoint of the genetic octave Yin-Yang-algebra

The set of known dialects of the genetic code (GC) is analyzed from the viewpoint of the genetic octave Yin-Yang-algebra. This algebra was described in the previous author’s publications. The algebra was discovered on the basis of structural features of the GC in the matrix form of its presentation (“matrix genetics”). The octave Yin-Yang-algebra is considered as the pre-code or as the model of...

متن کامل

Rough ideals based on ideal determined varieties

The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...

متن کامل

SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY MAX-MIN GENERAL FUZZY AUTOMATA

We present some connections between the max-min general fuzzy automaton theory and the hyper structure theory. First, we introduce a hyper BCK-algebra induced by a max-min general fuzzy automaton. Then, we study the properties of this hyper BCK-algebra. Particularly, some theorems and results for hyper BCK-algebra are proved. For example, it is shown that this structure consists of different ty...

متن کامل

Fuzzy soft ideals of near-subraction semigroups

Our aim in this paper is to introduce the notion of fuzzy soft near-subtraction semigroups and fuzzy soft ideals of near-subtraction semigroups. We discuss some important properties of these new fuzzy algebraic structure and investigate some examples and counter examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 51 4  شماره 

صفحات  -

تاریخ انتشار 2005